

A Comparative Analysis of Recombinant AAV9 Product Generated from Insect and Mammalian Bioproduction Processes

Phuong Nguyen Senior Scientist, Downstream Process Development, Neurogene Inc. ASGCT 2023

Disclosures

Presenter: Phuong Nguyen

Phuong Nguyen is Senior Scientist, Process Development at Neurogene Inc.

Courtney Barlament is Associate Director, Upstream Process Development at Neurogene Inc.

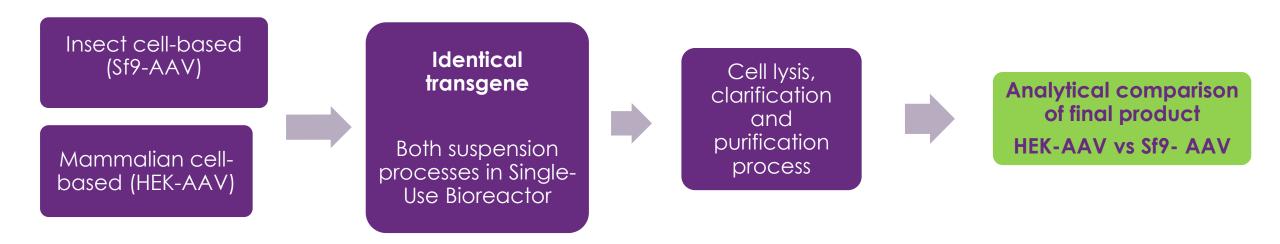
Natasha Patel is a Scientist, Process Development at Neurogene Inc.

Adib Shafipour is an Associate Scientist, Process Development at Neurogene Inc.

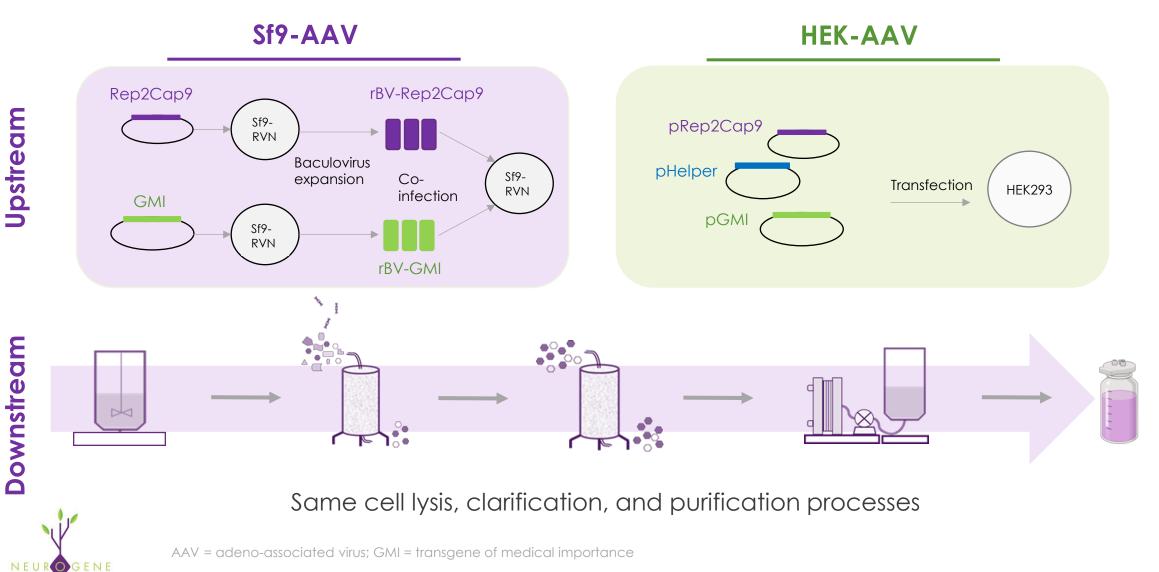
Anandita Seth is VP of Process & Analytical Development at Neurogene Inc.

This work was funded by Neurogene Inc. Neurogene employees own stock options in the company.

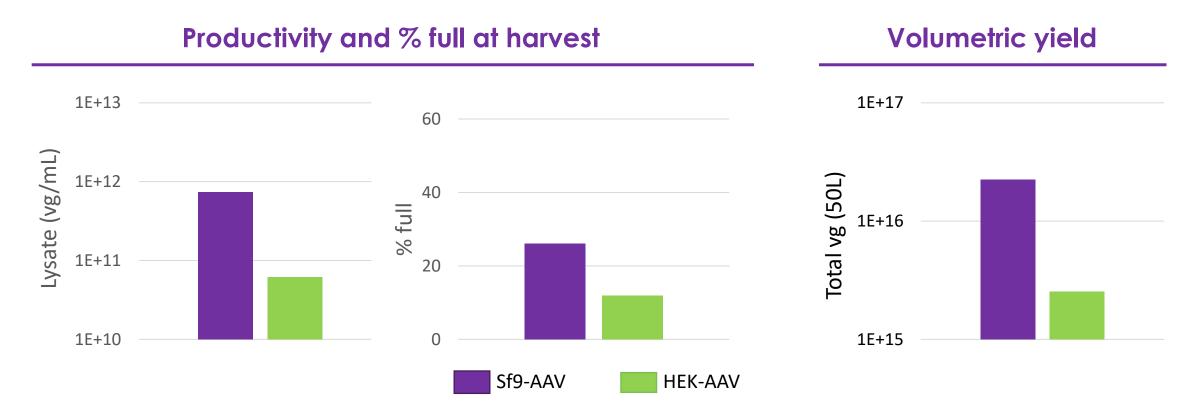
Background


- Mammalian (HEK-AAV) and insect cell-based (Sf9-AAV) manufacturing systems are the two
 predominant AAV manufacturing platforms
- Neurogene has established both manufacturing platforms and have cleared INDs with each process

	Sf9-AAV	HEK-AAV
Advantages	 Higher productivity and lower COGS Robust scale-up Better safety profile (absence of proto-oncogene in production cells, less rcAAV) Little or no expression of transgenes in insect cells 	 Flexibility to switch from one serotype and/or transgene to another Speed and established protocols to generate material
Challenges	 Requires master and working banks of both recombinant baculovirus clones (upfront time and resource utilization) Might require viral clearance demonstration in early phases (even with Rhabdo-free cell line) 	 Lower productivity and higher COGS Scale-up challenges: Requires carefully controlled mixing at transfection step Some transgene expression may affect performance of the cell culture system


Study Objective- Analytical Comparison of Mammalian and Insect Cell-based Manufacturing Systems

Two optimized, scalable platforms were utilized to generate AAV9 containing same **transgene of medical importance** (GMI)



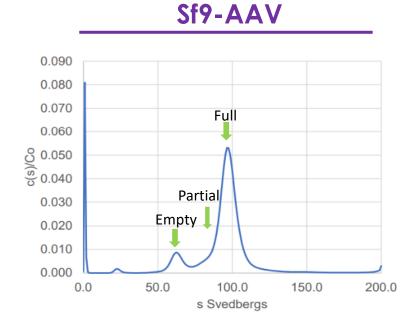
Process Overview of AAV9 Production Systems

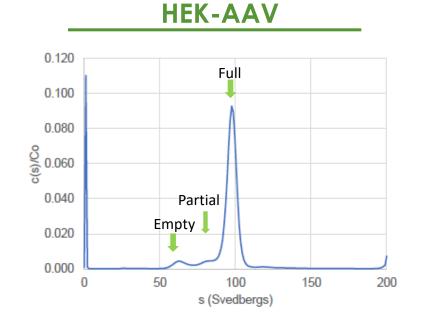
RVN= Rhabdovirus Negative

The Insect Cell-based System Yields Higher Productivity and Percent Full at Harvest

Total yield from the same scale runs is ~10-fold higher using the Sf9-AAV system

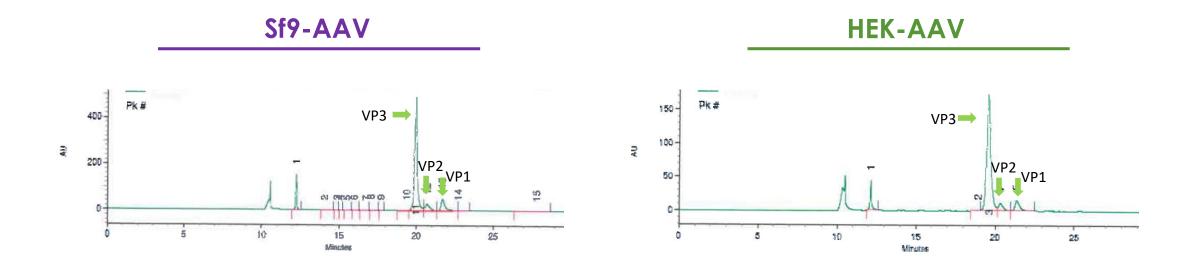
Recoveries From Each Unit Operation are Similar Between the Two Processes


100% 90% 80% 70% 60% 50% 40% 30% 20% Sf9-AAV 10% 0% **HEK-AAV** Clarification TFF1 Affinity TFF2 AEX TFF3/BDS Overall Chromatography Chromatography


Sf9-AAV and HEK-AAV Step recoveries by ddPCR

TFF = tangential flow filtration; AEX = anion exchange; BDS = bulk drug substance; ddPCR = droplet digital polymerase chain reaction

Both Processes Resulted in Similar AAV Particle Content by AUC



Particle Content (%)	Sf9-AAV	HEK-AAV
Empty	10	6
Partial	8	7
Full	82	87

Similar Capsid Composition (Viral Protein Ratio) Observed in Both Products by CE-SDS

Species	VP1	VP2	VP3	AAV Purity (%)
Sf9-AAV	1.5	1.0	10	90
HEK-AAV	1.1	0.8	10	93

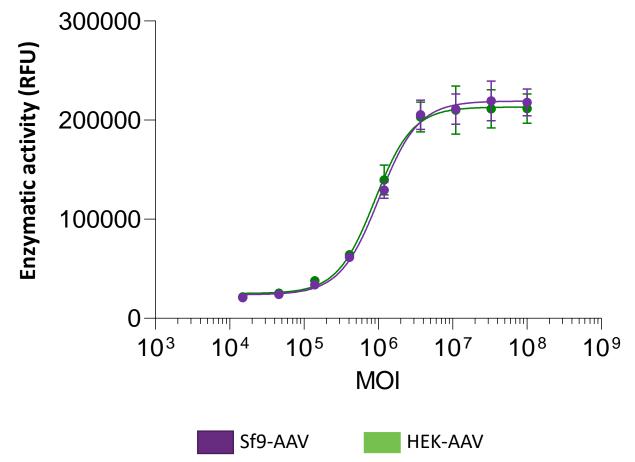
Overall Low Levels of PTM on the Capsid Surface, and the Difference between Products is within Assay Variability

20 (%) MTc Sf9-AAV 10 **HEK-AAV** 0 Deamidation Oxidation Methylation Phosphorylation Acetylation

Post-translational Modification

MiSeq Data Analysis Showed Similar Genome Integrity for Both Processes

Regions	Sf9-AAV (reads aligning to map %)	HEK-AAV (reads aligning to map %)	
NGN Construct (GMI)	86	91	
Starting Plasmid Backbone	0.02	1.30	
Baculo RepCap/Plasmid RepCap	0.18	0.48	
Shuttle Vector	0.010	N/A	
Helper Plasmid	N/A	0.21	
Host Cell DNA	1.10	0.57	


Residual (Impurity) Analysis and Safety Testing Showed Comparable Profiles

Assay	Sf9-AAV	HEK-AAV
Endotoxin (EU/mL)	< 0.05	< 0.05
SEC (%)	Monomer = 97.6 HMWS = 2.4	Monomer = 99.2 HMWS = 0.8
Replication competent AAV (in 1E+11 vg)	<10 rcAAV	<10 rcAAV
Residual Host Cell Protein (ng/mL)	8.1	<2.0
Residual Host Cell DNA (ng DNA/E+13 vg)	< 0.1	2.5
Residual baculovirus DNA/plasmid (copies/E+13 vg)	2.0E+6	2.0E+11

SEC = size exclusion chromatography; HMWS = high molecular weight species

AAV Products from Both Processes Show Similar Activity Using a Functional (Enzymatic) Potency Assay

Process	Relative Potency (%)	
Sf9-AAV	100	
HEK-AAV	87	
Assay variability is +/- 25%		

AAV = adeno-associated virus; GMI = transgene of medical importance; MOI = multiplicity of infection

Conclusions

- We thoroughly characterized and compared the final products (containing the same GMI) generated using an Sf9 and a HEK process in order to address the question of which is a better process
- Using developed processes, both methods yielded high quality vector with low amounts of impurities, a high % of full capsids, and low levels of post translational modifications
- Considerations/Caveats
 - Design of RepCap construct plays a significant role in high quality product from Sf9 system, and we
 have a used an optimized design in this study.
 - Downstream process has some differences in buffer pH for the anion-exchange chromatography step.
 - Does not include long-read sequencing data
 - No in-vivo studies performed
- While there were minor differences in the product quality, the biological function was comparable for Sf9 and HEK derived products
- Sf9 had consistently higher yields and is our platform of choice, while we use HEK for indications requiring less drug product

Acknowledgements

Process Development Courtney Barlament Natasha Patel Adib Shafipour Shayan Kariminia

Analytical Development

Xiaoyun Xu Lexy Cattin-Roy Caitlin Tripp Juliana Benito Rachel Stroup Rebecca Cram Ruda Cui Wei Liao Zheng (Judy) Chen

... and the entire CMC team

